笛卡尔坐标系的历史作用
作者:小菜
更新时间:2025-01-16
点击数:

简介:(1)笛卡尔坐标系的历史作用笛卡尔坐标系就是直角坐标系和斜角坐标系的统称。
相交于原点的两条数轴,构成了平面放射坐标系。
如两条数轴上的度量单位相等,则称此放射坐标
【千问解读】
(1)笛卡尔坐标系的历史作用
笛卡尔坐标系就是直角坐标系和斜角坐标系的统称。相交于原点的两条数轴,构成了平面放射坐标系。
如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。
两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。
二维的直角坐标系是由两条相互垂直、0点重合的数轴构成的。
在平面内,任何一点的坐标是根据数轴上对应的点的坐标设定的。
在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。
采用直角坐标,几何形状可以用代数公式明确的表达出来。
几何形状的每一个点的直角坐标必须遵守这代数公式。
(2)如何理解极坐标系
极坐标系是指在平面内由极点、极轴和极径组成的坐标系,在平面上取定一点O,称为极点,从O出发引一条射线,称为极轴,再取定一个单位长度,通常规定角度取逆时针方向为正,这样,平面上任一点P的位置就可以用线段OP的长度以及从射线到OP的角度来确定。(3)球坐标系怎么确定φ的范围
先把空间区域投影到到yOz平面,而φ是z正轴到z负轴的角度,要从空间方程取得φ,先把x设为0,方程变为f(y,z)=0这形式内,然后两个关于y和z的方程的交接点,以第一象限为准,最后φ=arctan(z坐标容/y坐标),对于锥面,φ一般为π/4。球坐标系是三维坐标系的一种,用以确定三维空间中点、线、面以及体的位置,它以坐标原点为参考点,由方位角、仰角和距离构成。
球坐标系在地理学、天文学中都有着广泛应用。
(4)用电脑怎么制作平面直角坐标系
制作方法:将空白表的行距和列距调整到适合的大小,再设置合适的线条,画X轴及Y轴,再将刻度值填写在相应的位置上,就形成了空白的直角坐标系。在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系。
通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做x轴或横轴,垂直的数轴叫做y轴或纵轴,x轴y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点,以点O为原点的平面直角坐标系记作平面直角坐标系xOy。